
Automatic Differentiation in Quantum Chemistry with Applications
to Fully Variational Hartree−Fock
Teresa Tamayo-Mendoza,† Christoph Kreisbeck,*,† Roland Lindh,‡ and Alań Aspuru-Guzik*,†,§

†Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United
States
‡Department of Chemistry-Ångström, The Theoretical Chemistry Programme, Uppsala Center for Computational Chemistry, UC3,
Uppsala University, Box 518, 751 20, Uppsala, Sweden
§Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada

*S Supporting Information

ABSTRACT: Automatic differentiation (AD) is a powerful tool
that allows calculating derivatives of implemented algorithms with
respect to all of their parameters up to machine precision, without
the need to explicitly add any additional functions. Thus, AD has
great potential in quantum chemistry, where gradients are
omnipresent but also difficult to obtain, and researchers typically
spend a considerable amount of time finding suitable analytical
forms when implementing derivatives. Here, we demonstrate that
AD can be used to compute gradients with respect to any
parameter throughout a complete quantum chemistry method. We
present Dif f iQult, a Hartree−Fock implementation, entirely
differentiated with the use of AD tools. Dif f iQult is a software
package written in plain Python with minimal deviation from
standard code which illustrates the capability of AD to save human effort and time in implementations of exact gradients in
quantum chemistry. We leverage the obtained gradients to optimize the parameters of one-particle basis sets in the context of the
floating Gaussian framework.

1. INTRODUCTION

Automatic differentiation (AD) is a conceptually well-
established tool to calculate numerical gradients up to machine
precision,1,2 by iteratively applying the chain rule and
successively walking through the computational graph of
numerically implemented functions. Therefore, AD facilitates
the computation of exact derivatives of coded algorithms with
respect to all its variables without having to implement any
other expression explicitly. AD circumvents challenges arising
in traditional approaches. For example, the evaluation of
analytical expressions tends to be inefficient, and numerical
gradients can be unstable due to truncations or round-off
errors. Enabled by a variety of libraries,3−11 AD has been
successfully implemented to various applications.12−14 For
example, AD has been used for quantum control in open-
quantum systems to find an optimal time-dependent field to
obtain a specific state.15,16 Furthermore, new libraries
developed in the context of deep learning9,17−19 make AD
techniques even more accessible to a broader community. For
instance, Leung et. al used a parallelized machine learning tool,
TensorFlow, to obtain the optimal parameters to minimize
several kinds of cost-functions to tune the evolution of
quantum states.20

In this manuscript, we highlight the relevance of AD for
quantum chemistry and demonstrate that AD provides a novel

general path forward to reduce the human time spent on the
implementation gradients for electronic structure methods.
Gradients play a fundamental role in optimization procedures
as well as for the computation of molecular response properties
such as dipole moments polarizabilities, magnetizabilities, or
force constants.21 Although analytical expressions are available
for some derivatives in many cases,22−25 researchers typically
spend a considerable amount of time finding suitable analytical
forms when implementing new quantum chemistry methods.18

Depending on the complexity of the electronic structure
method, this can result in a significant time delay between the
development of the method and the implementation of its
gradients. The implementation of geometrical gradients for
MC-SCF21,26 has been published more than 10 years after the
method itself.27 Moreover, some analytical gradients can be too
complicated to be handled manually. For example, the complex
analytical derivatives of the FIC-CASPT228,29 method,
published more than two decades ago, has been only recently
accessible through advances in automatic code generation.30,31

AD techniques could play an important role in quantum
chemistry by marginalizing the complexity of implementing
gradients, as it allows computing the gradients without coding

Received: December 6, 2017
Published: May 9, 2018

Research Article

Cite This: ACS Cent. Sci. 2018, 4, 559−566

© 2018 American Chemical Society 559 DOI: 10.1021/acscentsci.7b00586
ACS Cent. Sci. 2018, 4, 559−566

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

http://pubs.acs.org/action/showCitFormats?doi=10.1021/acscentsci.7b00586
http://dx.doi.org/10.1021/acscentsci.7b00586
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html

them explicitly. The advantages of AD techniques have been
used before in electronic structure methods.32−36 In these
previous works, the implementations were tailored to the
differentiation of the specific application. These typically
require considerable changes to existing code or the explicit
implementation of some analytical gradients, Taylor coeffi-
cients, or adjoints. For instance, in the context of density
functional theory, a combined approach using analytical
expression together with AD has been successfully applied to
compute higher order derivatives of the exchange-correlation
term.32 Further, Sorella et al.36 explicitly derived the
appropriate sequence of computation of adjoints and their
expressions for the kinetic and potential energy terms. Here, we
apply AD in a broader context and demonstrate that AD tools
are an efficient way to get arbitrary gradients for a complete
quantum chemistry method with respect to any input
parameter. To this end, we implement a fully autodifferentiable
Hartree−Fock (HF) method which we distribute in our
Dif f iQult software package37 written in plain Python language.
We have selected HF since it is not only used in many
electronic correlation methods as an initial step but contains
complex mathematical operations and functions, such as
calculating derivatives of eigenvectors or special functions.
The latter is also relevant for more sophisticated quantum
chemistry methods38 and impose nontrivial requirements for
suitable AD libraries as they need to lay out the complete
computational graph rather than calling black-box routines, for
example, implemented in LAPACK.39 We illustrate the
capabilities of Dif f iQult within the framework of a fully
variational HF method, where we use a gradient-based
optimization of the SCF-energy to optimize the parameters
of the basis set within the Floating Gaussian framework.40,41

Our implementation sets the basis for extending the Dif f iQult
software package to include post-HF methods such as FCI and
MP2, and to leverage higher order derivatives to obtain
anharmonic corrections for rotational−vibrational spectrosco-
py.
This paper is organized as follows: In section 2, we provide a

small review of the algebra behind automatic differentiation. In
the section 3 we introduce the fully variational Hartree−Fock
method. In section 4, we discuss in detail the key components

of the canonical HF algorithm and explain how they were
implemented in Dif f iQult by considering an appropriate
selection and usage of an AD library. In Section 5 we
demonstrate the capabilities of our algorithm by optimizing the
one-electron basis functions of small molecules. Finally, in
section 6, we conclude with an outlook of future directions of
Dif f iQult, and a perspective of the role of AD in simplifying and
accelerating the implementation of gradients of new quantum
chemistry methods.

2. AUTOMATIC DIFFERENTIATION

The idea behind automatic differentiation is that every
algorithm, independent of its complexity, consists of a series
of simple arithmetic operations that have known analytical
forms, such as sums, multiplications, sines, cosines, or
exponents. The sequence of these elementary operations is
represented by a computational graph; see for example Figure
1. In this form, it is possible to compute the gradients of the
outputs of a function with respect to its inputs by applying the
chain rule and evaluating the analytical derivatives of all of these
elementary operations in a given order. This implies that AD
libraries can differentiate the entire algorithm not only
mathematical expressions, written in an explicit form, but also
all the control functions such as recursions, loops, conditional
statements, etc. Therefore, AD computes the exact derivatives
of any code with machine precision.1 In practice, there are two
main forms to compute derivatives using the chain rule with
AD tools: forward and backward mode. We illustrate both
modes in Figure 1.
Forward mode is conceptually the easiest way to compute

gradients. Let us consider the function →F: n m defined by
a sequence of k functions, → +f :i

n ni i 1 in the following way
y = F(x) = (f k°f k−1°...f1°f 0)(x). In forward mode, the partial
derivative of a function with respect to a given parameter xj,

̇ = ∂
∂

y y
xj
, is computed by evaluating simultaneously the

intermediate variables ϕi+1 = f i(ϕi) and the derivatives

ϕ ϕ ϕ= ̇
ϕ+

∂
∂

()i
f

i i1
i

i
, at a given x = a. Note that ϕ0 = x and

ϕ ̇ = ̇ = ∂
∂

x x
x0 j
. Once we defined the values of the independent

Figure 1. The center depicts the computational graph of a simple function F(x1, x2) and its elementary operations. On the left and right, we illustrate
the differentiation steps of forward and backward mode, respectively. In forward mode, the evaluation of the function at a given set of parameter and
the derivative with respect to x1 is evaluated by computing the intermediate variables ϕi and their derivatives following the order of the
computational graph using the chain rule. The direction of the evaluation is indicated by the left arrow. In backward mode, the function is evaluated
first at a given value, and later the adjoints of all the intermediate variables are computed by iterating backward through the computational graph,
indicated by the right arrow. Notice, in this mode, the partial derivatives of the function with respect to the two independent variables are computed
together, whereas in forward mode each partial derivative of the function has to be evaluated separately. In this example, to compute the entire
gradient, the number of operations in backward mode is smaller than in forward mode.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.7b00586
ACS Cent. Sci. 2018, 4, 559−566

560

http://dx.doi.org/10.1021/acscentsci.7b00586

variables, the algorithm proceeds to calculate ϕ1 and ϕ̇1, and
will continue to compute the partial derivatives of the next
elementary operations following the computational graph by
sequentially applying the chain rule. For instance, the
differentiation of a function F with a single dependent variable
goes from right side to left side of the equation,

ϕ
ϕ

ϕ
ϕ
ϕ

ϕ

ϕ
ϕ

ϕ
ϕ
ϕ

ϕ

ϕ
ϕ

ϕ
ϕ ϕ

̇ = =

= ̇

= ̇

−

−

−

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟
⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

y
y
x

y
x

y
x

y

d
d

d
d

d

d
...

d

d

d

d

d
d

d

d
...

d

d
(())

d

d

d

d
...(())

a k

k

k

k

k

k

i

k

k

k

1

1

0

0

1

1

0
0

1
2 1

(1)

An example of forward differentiation of a more complex
function with two variables is illustrated on the left side in
Figure 1. We display the steps to compute the partial
derivatives of the intermediate variables with respect to a
single parameter. Since the forward mode relies on the
generation of the derivatives of the elementary operations
with respect to each individual input parameter, it is particularly
suited for functions with few independent variables.
The second form is backward mode, which relies on the

computation of the “adjoints” ̅ = ̅
∂
∂

x yF
x

T

j
by computing the

adjoints of the intermediate variables, ϕ ϕ ϕ̅ = ̅ϕ
∂
∂ +

⎡
⎣⎢

⎤
⎦⎥()i

f
i

T

i 1
i

i
. In

contrast to forward mode, in backward mode the adjoints are
computed following the opposite direction through the
computational graph by iterating computing each adjoint of
all the intermediate variables. The algorithm first evaluates the
function F(x) at a given set of parameters x = a, and later
proceeds to calculate the adjoints of the last intermediate
variable to the first one iterating backward through the
computational graph. By definition, ϕk = y, therefore ϕ = 1k .
If F(x) only depends on a single parameter, this procedure is
the equivalent of evaluating the chain rule from left to right,

ϕ
ϕ

ϕ
ϕ
ϕ

ϕ

ϕ
ϕ

ϕ
ϕ
ϕ

ϕ

ϕ ϕ
ϕ
ϕ

ϕ

̅ = = ̅ =

= ̅

=
∂
∂

∂
∂

−

−

−

⎛

⎝
⎜⎜
⎛
⎝
⎜⎜
⎛
⎝
⎜⎜
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜
⎛
⎝
⎜⎜
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

x
y
x

F
x

y
y

x

y
x

x

d
d

d
d

d
d

d

d
...

d

d

d

d

(())
d

d
...

d

d

d

d

(())... .

T

k

k

k

k
k

k

k k

a 1

1

0

0

1

1

0

0

1
2

1

1

(2)

The last step of backward mode, after calculating all the
intermediate adjoints, results in the partial derivatives of the
function with respect to all parameters. An example with a
more complex composition of function with two variables is
illustrated on the right side of Figure 1, where we get the entire
gradient of F(x1, x2) with a single backward propagation
evaluation. Note that intermediate adjoints can be used at a
later stage to obtain the partial derivatives with respect to both
variables resulting in a reduction of operations compared to the

forward differentiation. This characteristic generally makes the
backward mode more efficient for a small number of dependent
variables. For more details about the general differences over
both modes and its implementation, the reader might refer to
ref 2.
In practical applications, the choice of either differentiation

mode depends on the specific form of the computational graph
as well as on performance considerations taking into account
the available computational resources. For example, backward
mode requires either storing the complete sequence of
operations of the algorithm to compute the function or
recalculating the intermediate variables. On the other hand, this
constraint might be compensated by the capability of the
backward mode to efficiently evaluate derivatives of many
parameters with fewer operations than the forward mode. In
our particular case, this analysis is done by reviewing the
relevant mathematical operations of a canonical HF algorithm
for an efficient implementation of gradients with AD
techniques.

3. FULLY VARIATIONAL HARTREE−FOCK
Our goal is to implement gradients with AD techniques for a
quantum chemistry method without writing any explicit
gradient. In this manuscript, as an illustrative, yet useful
example, we apply AD to obtain HF energy gradients to
optimize parameters of Gaussian basis functions. This
algorithm will enable a more compact wave function
representation while maintaining a comparable level of accuracy
in energy achieved by using larger basis sets. Thus, this method
will provide tailored molecular one-electron basis functions
with greater flexibility compared to atomic-centered Gaussian
expansions.
In the HF method, the wave function is constructed as a

linear combination of one-electron basis functions, where we
minimize the energy by finding the appropriate expansion
coefficients. The selection of these basis functions is critical to
accurately reproduce the behavior of a system.42 The most
popular form of these basis functions is the atomic-centered
contracted Gaussian functions because the computation of one-
and two-electron integrals have well-established forms for their
implementations.24,43−45 Each of these functions is defined by
the set of following parameters: (i) the exponents {α} defining
the Gaussian width, (ii) the contraction coefficients {c} defining
the linear expansion of the Gaussian representation of the
atomic orbital (AO), (iii) the coordinates A defining the center
of the Gaussians, and (iv) the angular momentum a defining
the order of the polynomial factor defined by the coordinate
system (e.g., Cartesian or spherical harmonics).46

These one-electron basis functions are generally obtained by
energy optimizations of single atoms with a certain level of
theory and are intended to mimic AO.47 However, when AOs
are used as a basis for molecules they require some degree of
flexibility to describe more complex behaviors such as
polarization effects. Therefore, one usually selects a relatively
large number of basis functions with AOs of different exponents
and sufficiently high angular momentum.42 The drawback of
using a larger basis set is the increase in numerical complexity,
imposing limitations on actual calculations.
To get a fully optimized wave function, we can minimize not

only the expansion coefficients, but all types of variational
parameters of the Gaussian AOs mentioned above, such as
nuclear coordinates, Gaussian centers, contraction coefficients,
and exponents. A fully variational approach may be useful to

ACS Central Science Research Article

DOI: 10.1021/acscentsci.7b00586
ACS Cent. Sci. 2018, 4, 559−566

561

http://dx.doi.org/10.1021/acscentsci.7b00586

reduce the number of basis functions and to obtain a more
compact representation of the wave function. This could either
improve the calculation of molecular properties40,42,48 or yield a
better reference state for certain higher levels of theory.49 A
prominent example of a variational approach is the so-called
Floating Gaussians41,50−52 in which the centers of the AOs are
optimized. Some authors have partially optimized parameters
such as the Gaussian widths for the valence shell40 or included
extra orbitals around the region of the chemical bond.53,54

Furthermore, wave function parameters have been optimized
within a higher level of theory,55,56 such as CASSCF and
MP2,57 or HF over ab initio molecular dynamics.58,59 These
methods have implemented gradient or Hessian-based
optimization with analytical nuclear derivatives.
In this paper, we present a fully variational approach,56 where

we optimize the molecular orbitals with a quasi-Newton
method. Here, the gradients are calculated using solely a plain
Python implementation of a HF and an AD library. By taking
advantage of the AD techniques, we can compute numerically
exact gradients with respect to any parameter without the need
for implementing analytical gradients explicitly. This provides
the flexibility to either simultaneously optimize the Gaussian
exponents and positions, or to optimize them sequentially.

4. IMPLEMENTATION
In the following section, we describe Dif f iQult, a fully
variational HF algorithm that calculates gradients employing
AD. In particular, we discuss options and constraints that need
to be considered when applying AD in a quantum chemistry
method. Dif f iQult contains two main parts, (i) a restricted HF
implementation that provides HF energies as well as its
derivatives with respect to any input parameter and (ii) a
gradient-based optimization of wave function parameters. The
scheme of our fully variational Hartree−Fock implementation
is shown in Figure 2.
The philosophy behind using AD is centered around the idea

of saving human effort in the implementation of gradients.
Ideally, we would like to choose a suitable AD library capable of
getting gradients from AD just by adding minimal changes to
standard Python or C++ code. In this way, we would be able to
significantly reduce the amount of time required for the
implementation of gradients for new electronic structure
methods. Moreover, we could link the AD library to existing
electronic structure software packages for which analytical or
numerical gradients might be inefficient. However, to what
extent the aforementioned goals can be reached depends on the
capabilities of the available AD libraries.3,4,60−63 Each of the
libraries differs in some aspects, but all of them have in
common that they are restricted in some way, and it remains to
be analyzed which ones match the requirements for a quantum
chemistry algorithm best. For example, we would need to
differentiate some operations that are typically computed by
library routines, e.g., LAPACK39 functions. To avoid explicit
implementation of those methods, an appropriate library
preferably supports linear algebra operations as well as calls
to special functions such as the incomplete gamma function.
Similarly, the AD modes, e.g., forward or backward mode, as
discussed in section 2 exhibit different properties, and one
might be more suitable for a particular implementation than the
other. A majority of the requirements are shared among various
electronic structure algorithms, including HF. Therefore, the
gradients computed solely with AD techniques of a HF
implementation in Dif f iQult serves as a proof-of-concept that

helps us to develop an understanding of the capabilities of AD
in quantum chemistry.
In the following analysis, we review how the library and AD

mode selection impact the implementation of Dif f iQult. We
should notice that certain operations that are simple in standard
implementations can raise challenges depending on the selected
AD library. For example, some control flow statements that
depend on intermediate variables might impose some
constraints in backward mode, if the library builds the
computational graph before the evaluation of the function. In
HF, control statements are for example implemented to
determine the required number of SCF steps for convergence.
Depending on the input parameter, e.g., the molecular
geometry, fewer or more iterations are needed to reach
convergence, and thus the computational graph consists of
fewer or more operations. This has severe implications on the
backward mode since for this mode the computational graph
needs to be fixed before function evaluation. We might
circumvent some of these issues by hard-coding the number of
steps of the SCF, but this simple example demonstrates that the
implementation of gradients with AD tools requires different
considerations when compared to developing traditional
software packages.
Another relevant aspect for the implementation of Dif f iQult

is the matrix operations. From the algorithmic point of view, we
should leverage vectorized operations whenever possible.64

Vectorized operations are taken as elementary operations in
most of the AD libraries, and the computation of their
derivatives is typically stated in a simple vectorized form which
avoids unnecessary storage and evaluations of intermediate
variables. However, in HF, as essentially in all wave function

Figure 2. Diagram of the fully variational algorithm implemented in
the Dif f iQult package.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.7b00586
ACS Cent. Sci. 2018, 4, 559−566

562

http://dx.doi.org/10.1021/acscentsci.7b00586

based quantum chemistry methods, one and two electron
integrals are typically defined by an element-wise array
assignment (e.g., A[i,j] = k). This nonvectorized assignment
represents a major challenge for backward mode regarding the
amount of memory needed to store the computational graph as
well as intermediate variables and derivatives.
The most critical component for our HF implementation in

Dif f iQult is matrix diagonalization. In some AD libraries such as
autograd,65 this matrix operation is considered as an elementary
operation, which can be implicitly differentiated to obtain its
adjoints and derivatives, respectively for each mode. In
backward mode, the analytical expression for the adjoint of
the eigenvectors is in principle available. However, the adjoints
of the eigenvectors corresponding to repeated eigenvalues are
not differentiable;3,64 see Supporting Information. Therefore,
we cannot use backward differentiation for matrix diagonaliza-
tion of systems with degenerate molecular orbitals. Since we
aim to compute general molecular systems, we exclude the
backward mode for our implementation of Dif f iQult. This
leaves the forward mode as a possible option to circumvent the
challenges of repeated eigenvalues. For the forward mode, the
analytical expressions of the derivatives of eigenvectors are
known, even for the degenerate case.66 This method relies on

computing the nth-order derivative of the eigenvalues such that
its diagonals are distinct and on computing the n + 1th-order
derivative of the original matrix that needs to be diagonalized;
see Supporting Information. Therefore, we would need an
implementation that would depend on a case-by-case analysis.
Alternatively, Walter et al.67 proposed a general algorithm to
compute the diagonalization, based on univariate Taylor
polynomials (Supporting Information),1,63 implemented in
Algopy.63 This approach is mathematically equivalent to
forward differentiation and considers the repeated eigenvalue
problem. For further details, we refer the reader to the
Supporting Information.
Even though we may consider reverse mode as a more

efficient way for our implementation given the large number of
input parameters and the small number of output variables,
after this analysis, we conclude that an HF implementation is
required to be based on the forward mode. Regarding the AD
library, we have chosen Algopy,63 since it supports both AD
modes, provides matrix diagonalization for repeated eigenval-
ues, and requires only minimal modifications to calculate
gradients of functions implemented in plain Python.
Finally, once we have implemented an autodifferentiable HF

algorithm in Algopy, we use a gradient-based optimization to

Figure 3. One-electron basis function optimizations of H2O. (a) Optimization steps of STO-3G and STO-2G with different optimization schemes.
(A) Optimizing exponents and coefficients 10 steps each twice, and (B) optimizing exponents and coefficients together, followed by optimizing
positions. (b) Contour of the difference in electronic density between the STO-3G basis and the optimized one-electron basis functions under
scheme (B). (c) Contours of the difference in electronic density between the conventional STO-3G basis set and the reference 3-21G basis set. (d)
Contour of the difference in electronic density between the optimized (scheme (B)) STO-3G basis set and the reference 3-21G basis set. An increase
of density on the optimization is displayed in blue and a decrease is in red.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.7b00586
ACS Cent. Sci. 2018, 4, 559−566

563

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.7b00586/suppl_file/oc7b00586_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.7b00586/suppl_file/oc7b00586_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.7b00586/suppl_file/oc7b00586_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.7b00586/suppl_file/oc7b00586_si_001.pdf
http://dx.doi.org/10.1021/acscentsci.7b00586

optimize Gaussian centers, widths, and contraction coefficients
either together or separately. We use the Broyden−Fletcher−
Goldfarb−Shanno (BFGS) algorithm68 implemented in the
scipy module. As recommended in ref 56, we take the natural
logarithm to optimize the Gaussian exponents. No unexpected
or unusually high safety hazards were encountered during the
course of this study.

5. RESULTS
We tested our implementation by optimizing the STO-2G as
well as the STO-3G minimal basis sets for the small molecules
H2O, HF, NH3, CH4, and CH2O. Since we can obtain the
gradients with respect to any input parameter, Dif f iQult has the
freedom to select different optimization procedures. Here, we
illustrate two schemes: (A) optimizing the Gaussian exponents
and contraction coefficients, sequentially, and (B) optimizing
the contraction coefficients and exponents, followed by an
optimization of the Gaussian centers. For the example of H2O,
the improvement of the energies for each optimization step is
illustrated in Figure 3. We find that the most efficient way to
optimize the HF energy is by employing scheme (B) since it
already converges after 10 basis set optimization steps. For a
general assessment of which method works better than the
other, we need to consider the trade-off between reaching fast
convergence and computation time. For example, scheme (B)
requires more time to perform a single optimization step since
it requires computing more gradients for a larger number of
parameters due to the line-search procedure within the BFGS
algorithm. All optimizations were done until finding an infinite
norm of the gradient of 10−5 or a total of 10 steps, respectively.
Table 1 displays HF energies for optimized and nonoptimized

basis sets for selected small molecules. The optimization
scheme (B) results in an improvement of up to 0.18 hartree per
electron.
The minimal basis sets we optimized lacked in flexibility to

correctly represent polarization and dispersion in the core
molecular orbitals. For instance, hydrogen contains only a
single atom centered s-type orbital that is insufficient to display
changes in the density induced by the surrounding charges. By
optimizing the parameters of the atomic orbital of each
hydrogen, we can partially take into account polarization
effects. As is depicted in Figure 3b, the optimization of the basis
STO-3G of H2O shifts the electronic density from the regions
around the hydrogen atoms toward the bond regions. In the
case of the oxygen, as it is shown in Figure 3c,d, the number of

basis function is not sufficient to represent both the bond and
the density around the oxygen itself, even after the
optimization. Therefore, corrections to the core atomic orbitals
of oxygen would need to include a greater number and higher
angular momentum one-electron functions.
Finally, we discuss a common convergence problem of the

HF method that can affect our fully variational HF
implementation. It appears in our examples mainly in the
line-search, when the optimizer by chance tests the parameter
for which the SCF is difficult to get converged. In principle, this
problem can be circumvented by suitable convergence
strategies in the HF algorithm.

6. CONCLUSION AND PERSPECTIVE

AD offers a promising alternative solution for computing
accurate derivatives of electronic structure methods. In this
manuscript, we implemented Dif f iQult, which serves as a proof-
of-concept that helps us to develop an understanding of the
capabilities of AD in quantum chemistry. Specifically, we
presented and discussed the use of AD in the context of a fully
variational HF method, which contains most of the
mathematical components of other electronic structure
methods. By using the Algopy AD library, we calculated
gradients of any parameter with just minimal adjustments in the
source code of the canonical HF energy, without any explicit
implementation of a single derivative. With these gradients at
hand, we are able to fully minimize the energy with respect to
any parameter of the Gaussian one-particle basis. As a result, we
capture, to some extent, polarization effects with a reduced
number of atomic orbitals. Since the essential functions of
many quantum chemistry methods are similar to the ones
present in HF, we plan to extend Dif f iQult to post-HF methods
in future work.
Dif f iQult can be seen as a general tool to obtain molecular

tailored basis functions, that can be used as a starting point for
other variational methods, e.g., FCI. An emerging application
could be in the field of quantum computing for quantum
chemistry,69 where the size of one-electron basis function is
constrained by the number of qubits available in state-of-the-art
hardware.70−74 Thus, experimental demonstrations of quantum
algorithms for chemistry have been limited to conventional
minimal basis sets.74,75 Here, the fully variational setting of
Dif f iQult could offer the advantage to optimize initial
parameters of atomic orbitals, which could increase the
accuracy of variational quantum chemistry simulations,69

while keeping the number of basis functions small.
Finally, the analysis of the advantages of AD technologies in

the implementation of Dif f iQult demonstrates that AD has a
huge potential in future implementations. The AD tools could
extend quantum chemistry methods in many ways. For
example, in general, it is possible to mix different differentiation
modes and approaches. We could use the forward mode to
compute gradients of element-wise matrix definitions (or in
general for complex computational graphs) and use the
backward mode for vectorized functions. Furthermore, AD
could be combined with symbolic algebra and automated code
generation76−78 to build a general tool-chain to create software
packages capable of computing a function and computing
gradients with an AD library.

Table 1. Hartree−Fock Energies in Hartrees Test Molecules
of the Nonoptimized and Optimized (Scheme (B)) basis sets
STO-2G and STO-3Ga

basis

STO-2G STO-3G

molecule none
Opt. coef,
α and A none

Opt. coef,
α and A

reference:
3-21G

HF −95.60 −97.03 −98.57 −99.38 −99.46
H2O −72.74 −73.82 −74.96 −75.52 −75.59
NH3 −53.82 −54.65 −55.45 −55.83 −55.87
CH4 −38.59 −39.32 −39.72 −39.96 −39.98
CH3F −133.09 −134.96 −137.17 −137.43 −138.28
CH2O −109.02 −110.54 −112.35 −112.72 −113.22

aAs a reference, we show results for the larger 3-21G basis set.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.7b00586
ACS Cent. Sci. 2018, 4, 559−566

564

http://dx.doi.org/10.1021/acscentsci.7b00586

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acscentsci.7b00586.

Derivatives and adjoints of eigenvectors (S1). Descrip-
tion of a method used to compute the derivatives of
repeated eigenvalues in forward mode, Univariate Taylor
Arithmetic (S2) (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
(C.K.) *E-mail: christophkreisbeck@gmail.com.
(AA.) *E-mail: aspuru@chemistry.harvard.edu.

ORCID
Roland Lindh: 0000-0001-7567-8295
Alań Aspuru-Guzik: 0000-0002-8277-4434
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This project was supported by the NSF Award Number
1464862. R.L. acknowledges support by the Swedish Research
Council (Grant 2016-03398). T.T-M. thanks CONACyT for
scholarship No. 433469. T.T-M. appreciates the rich dis-
cussions with Jhonathan Romero Fontalvo and Benjamin
Sanchez Langeling.

■ REFERENCES
(1) Griewank, A.; Walther, A. Evaluating Derivatives, Principles and
Techniques of Algorithmic Differentiation, 2nd ed.; SIAM: Philadelphia,
2008.
(2) Bischof, C. H.; Bücker, M. Computing derivatives of computer
programs. In Modern Methods and Algorithms of Quantum Chemistry;
Grotendorst, J., Ed.; NIC, Series, 2000; Vol. 3 ; pp 315−327.
(3) Walther, A.; Griewank, A. Getting started with ADOL-C. In
Combinatorial Scientific Computing; Naumann, U., Schenk, O., Eds.;
Chapman-Hall CRC Computational Science, 2012; Chapter 7, pp
181−202.
(4) Bischof, C.; Khademi, P.; Mauer, A.; Carle, A. Adifor 2.0:
automatic differentiation of Fortran 77 programs. IEEE Comput. Sci.
Eng. 1996, 3, 18−32.
(5) Bischof, C. H.; Roh, L.; MauerOats, A. ADIC − An Extensible
Automatic Differentiation Tool for ANSI-C. Software-Practice and
Experience 1997, 27, 1427−1456.
(6) Bischof, C.; Khademi, P.; Mauer, A.; Carle, A. Adifor 2.0:
automatic differentiation of Fortran 77 programs. IEEE Comput. Sci.
Eng. 1996, 3, 18−32.
(7) Hascoeẗ, L.; Pascual, V. The Tapenade Automatic Differentiation
tool: Principles, Model, and Specification. ACM Transactions on
Mathematical Software 2013, 39, 1−43.
(8) Walther, A.; Griewank, A. Getting started with ADOL-C. In
Combinatorial Scientific Computing; Naumann, U., Schenk, O., Eds.;
Chapman-Hall CRC Computational Science, 2012; Chapter 7, pp
181−202.
(9) Maclaurin, D.; Duvenaud, D.; Adams, R. P. Gradient-based
Hyperparameter Optimization Through Reversible Learning. In
Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Vol. 37; ICML’15; JMLR.org,
2015; pp 2113−2122.
(10) Revels, J.; Lubin, M.; Papamarkou, T. JuliaDiff, https://github.
com/JuliaDiff, 2017.
(11) Revels, J.; Lubin, M.; Papamarkou, T. Forward-Mode Automatic
Differentiation in Julia. arXiv:1607.07892, 2016.

(12) Cohen, A.; Shoham, M. Application of hyper-dual numbers to
rigid bodies equations of motion. Mech. Mach. Theory 2017, 111, 76−
84.
(13) Henrard, M. Calibration in Finance: Very Fast Greeks Through
Algorithmic Differentiation and Implicit Function. Procedia Comput.
Sci. 2013, 18, 1145−1154.
(14) Niemeyer, K. E.; Curtis, N. J.; Sung, C.-J. pyJac: Analytical
Jacobian generator for chemical kinetics. Comput. Phys. Commun.
2017, 215, 188−203.
(15) Jirari, H. Optimal control approach to dynamical suppression of
decoherence of a qubit. Europhys. Lett. 2009, 87, 40003.
(16) Jirari, H.; Wu, N. Optimal state transfer of a single dissipative
two-level system. Eur. Phys. J. B 2016, 89, 100.
(17) Schmidhuber, J. Deep learning in neural networks: An overview.
Neural Netw. 2015, 61, 85−117.
(18) Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A.; Siskind, J. M.
Automatic differentiation in machine learning: a survey. Preprint
arXiv:1502.05767, 2015.
(19) Bengio, Y. Practical Recommendations for Gradient-Based
Training of Deep Architectures. In Neural Networks: Tricks of the
Trade: Second ed.; Montavon, G., Orr, G. B., Müller, K.-R., Eds.;
Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; pp 437−478.
(20) Leung, N.; Abdelhafez, M.; Koch, J.; Schuster, D. Speedup for
quantum optimal control from automatic differentiation based on
graphics processing units. Phys. Rev. A: At., Mol., Opt. Phys. 2017, 95,
042318.
(21) Gauss, J. Molecular properties. In Modern Methods and
Algorithms of Quantum Chemistry; Grotendorst, J., Ed.; NIC, Series,
2000; Vol. 3; pp 541−592.
(22) Almlöf, J.; Taylor, P. R. Molecular properties from perturbation
theory: A Unified treatment of energy derivatives. Int. J. Quantum
Chem. 1985, 27, 743−768.
(23) Helgaker, T., Jørgensen, P. Analytical Calculation of Geo-
metrical Derivatives in Molecular Electronic Structure Theory. In Adv.
Quantum Chem.; Löwdin, P.-O., Ed.; Academic Press, 1988; Vol. 19;
pp 183−245.
(24) Obara, S.; Saika, A. Efficient recursive computation of molecular
integrals over Cartesian Gaussian functions. J. Chem. Phys. 1986, 84,
3963−3974.
(25) Yamaguchi, Y.; Schaefer, H. F. Analytic Derivative Methods in
Molecular Electronic Structure Theory: A New Dimension to
Quantum Chemistry and its Applications to Spectroscopy. In
Handbook of High-Resolution; John Wiley & Sons, Ltd, 2011.
(26) Kato, S.; Morokuma, K. Energy gradient in a multi-
configurational SCF formalism and its application to geometry
optimization of trimethylene diradicals. Chem. Phys. Lett. 1979, 65,
19−25.
(27) Veillard, A.; Clementi, E. Complete multi-configuration self-
consistent field theory. Theor. Chim. Acta 1967, 7, 133−143.
(28) Andersson, K.; Malmqvist, P.-A.; Roos, B. O.; Sadlej, A. J.;
Wolinski, K. Second-order perturbation theory with a CASSCF
reference function. J. Phys. Chem. 1990, 94, 5483−5488.
(29) Andersson, K.; Malmqvist, P.-A.; Roos, B. O. Second-order
perturbation theory with a complete active space self-consistent field
reference function. J. Chem. Phys. 1992, 96, 1218−1226.
(30) MacLeod, M. K.; Shiozaki, T. Communication: Automatic code
generation enables nuclear gradient computations for fully internally
contracted multireference theory. J. Chem. Phys. 2015, 142, 051103.
(31) Vlaisavljevich, B.; Shiozaki, T. Nuclear Energy Gradients for
Internally Contracted Complete Active Space Second-Order Pertur-
bation Theory: Multistate Extensions. J. Chem. Theory Comput. 2016,
12, 3781−3787.
(32) Ekström, U.; Visscher, L.; Bast, R.; Thorvaldsen, A. J.; Ruud, K.
Arbitrary-Order Density Functional Response Theory from Automatic
Differentiation. J. Chem. Theory Comput. 2010, 6, 1971−1980.
(33) Bast, R.; Ekström, U.; Gao, B.; Helgaker, T.; Ruud, K.;
Thorvaldsen, A. J. The ab initio calculation of molecular electric,
magnetic and geometric properties. Phys. Chem. Chem. Phys. 2011, 13,
2627−2651.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.7b00586
ACS Cent. Sci. 2018, 4, 559−566

565

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acscentsci.7b00586
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.7b00586/suppl_file/oc7b00586_si_001.pdf
mailto:christophkreisbeck@gmail.com
mailto:aspuru@chemistry.harvard.edu
http://orcid.org/0000-0001-7567-8295
http://orcid.org/0000-0002-8277-4434
https://github.com/JuliaDiff
https://github.com/JuliaDiff
http://dx.doi.org/10.1021/acscentsci.7b00586

(34) Steiger, R.; Bischof, C. H.; Lang, B.; Thiel, W. Using automatic
differentiation to compute derivatives for a quantum-chemical
computer program. Future Gener. Comput. Syst. 2005, 21, 1324−1332.
(35) Barborini, M.; Sorella, S.; Guidoni, L. Structural Optimization
by Quantum Monte Carlo: Investigating the Low-Lying Excited States
of Ethylene. J. Chem. Theory Comput. 2012, 8, 1260−1269.
(36) Sorella, S.; Capriotti, L. Algorithmic differentiation and the
calculation of forces by quantum Monte Carlo. J. Chem. Phys. 2010,
133, 234111.
(37) Tamayo-Mendoza, T.; Kreisbeck, C.; Aspuru-Guzik, A.
DiffiQult, https://aspuru-guzik-group.github.io/DiffiQult, 2017.
(38) Jørgensen, P.; Simons, J. Second Quantization-Based Methods in
Quantum Chemistry, 1st ed.; Academic Press, 1981.
(39) Angerson, E.; Bai, Z.; Dongarra, J.; Greenbaum, A.; McKenney,
A.; Croz, J. D.; Hammarling, S.; Demmel, J.; Bischof, C.; Sorensen, D.
LAPACK: A portable linear algebra library for high-performance
computers. Proceedings SUPERCOMPUTING ’90. 1990; pp 2−11.
(40) Helgaker, T.; Almlöf, J. Molecular wave functions and properties
calculated using floating Gaussian orbitals. J. Chem. Phys. 1988, 89,
4889−4902.
(41) Frost, A. A. Floating Spherical Gaussian Orbital Model of
Molecular Structure. I. Computational Procedure. LiH as an Example.
J. Chem. Phys. 1967, 47, 3707−3713.
(42) Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronc-
Structure Theory, 1st ed.; John Wiley & Sons, 2000.
(43) Gill, P. M. W.; Head-Gordon, M.; Pople, J. A. Efficient
computation of two-electron - repulsion integrals and their nth-order
derivatives using contracted Gaussian basis sets. J. Phys. Chem. 1990,
94, 5564−5572.
(44) Reine, S.; Helgaker, T.; Lindh, R. Multi-electron integrals.
WIREs Comput. Mol. Sci. 2012, 2, 290−303.
(45) Valeev, E. F. Libint: A library for the evaluation of molecular
integrals of many-body operators over Gaussian functions. http://
libint.valeyev.net/, 2017; version 2.3.1.
(46) Schlegel, H. B.; Frisch, M. J. Transformation between Cartesian
and pure spherical harmonic Gaussians. Int. J. Quantum Chem. 1995,
54, 83−87.
(47) Jensen, F. Atomic orbital basis sets. WIREs Comput. Mol. Sci.
2013, 3, 273−295.
(48) Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry, 1st ed.;
Dover Publication, 1996.
(49) Almlöf, J.; Helgaker, T.; Taylor, P. R. Gaussian basis sets for
high-quality ab initio calculations. J. Phys. Chem. 1988, 92, 3029−3033.
(50) Huber, H. Geometry optimization in AB initio calculations.
Floating orbital geometry optimization applying the hellmann-feyman
force. Chem. Phys. Lett. 1979, 62, 95−99.
(51) Huber, H. Geometry optimization in ab initio SCF calculations.
J. Mol. Struct.: THEOCHEM 1981, 76, 277−284.
(52) Hurley, A. C. The computation of floating functions and their
use in force constant calculations. J. Comput. Chem. 1988, 9, 75−79.
(53) Neisius, D.; Verhaegen, G. Bond functions for ab initio
calculations on polyatomic molecules. Molecules containing C, N, O
and H. Chem. Phys. Lett. 1981, 78, 147−152.
(54) Neisius, D.; Verhaegen, G. Bond functions for AB initio
calculations. MCSCF results for CH, NH, OH and FH. Chem. Phys.
Lett. 1982, 89, 228−233.
(55) Tachikawa, M.; Osamura, Y. Simultaneous optimization of
exponents, centers of Gaussian-type basis functions, and geometry
with full-configuration interaction wave function: Application to the
ground and excited states of hydrogen molecule. J. Chem. Phys. 2000,
113, 4942−4950.
(56) Tachikawa, M.; Taneda, K.; Mori, K. Simultaneous optimization
of GTF exponents and their centers with fully variational treatment of
Hartree-Fock molecular orbital calculation. Int. J. Quantum Chem.
1999, 75, 497−510.
(57) Shimizu, N.; Ishimoto, T.; Tachikawa, M. Analytical
optimization of orbital exponents in Gaussian-type functions for
molecular systems based on MCSCF and MP2 levels of fully

variational molecular orbital method. Theor. Chem. Acc. 2011, 130,
679−685.
(58) Perlt, E.; Brussel, M.; Kirchner, B. Floating orbital molecular
dynamics simulations. Phys. Chem. Chem. Phys. 2014, 16, 6997−7005.
(59) Perlt, E.; Apostolidou, C.; Eggers, M.; Kirchner, B. Unrestricted
Floating Orbitals for the Investigation of Open Shell Systems. Int. J.
Chem. 2015, 8, 194.
(60) Theano Development Team, Theano: A Python framework for
fast computation of mathematical expressions. Preprint arXiv:
1605.02688 2016.
(61) Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems; tensorflow.org, 2015.
(62) Hascoeẗ, L.; Pascual, V. The Tapenade Automatic Differ-
entiation tool: Principles, Model, and Specification. ACM Trans. Math.
Software 2013, 39, 20.
(63) Walter, S. F.; Lehmann, L. Algorithmic differentiation in Python
with AlgoPy. J. of Comp. Sci. 2013, 4, 334−344.
(64) Giles, M. B. Collected Matrix Derivative Results for Forward
and Reverse Mode Algorithmic Differentiation. In Advances in
Automatic Differentiation; Bischof, C. H., Bücker, H. M., Hovland, P.,
Naumann, U., Utke, J., Eds.; Springer Berlin Heidelberg: Berlin,
Heidelberg, 2008; pp 35−44.
(65) Maclaurin, D.; Duvenaud, D.; Adams, R. P. Autograd: Effortless
Gradients in Numpy. In ICML 2015 AutoML Workshop, 2015.
(66) Nelson, R. B. Simplified calculation of eigenvector derivatives.
AIAA J. 1976, 14, 1201−1205.
(67) Walter, S. F.; Lehmann, L.; Lamour, R. On evaluating higher-
order derivatives of the QR decomposition of tall matrices with full
column rank in forward and reverse mode algorithmic differentiation.
Optim. Method. Softw. 2012, 27, 391−403.
(68) Nocedal, J.; Wright, S. J. Numerical Optimization, 2nd ed.;
Springer: New York, 2006; pp 497−528.
(69) Peruzzo, A.; McClean, J. R.; Shadbolt, P.; Yung, M.; Zhou, X.-
Q.; Love, P.; Aspuru-Guzik, A.; O'Brien, J. L. A Variational Eigenvalue
Solver on a Photonic Quantum Processor. Nat. Commun. 2014, 5,
4215.
(70) Barends, R.; et al. Superconducting quantum circuits at the
surface code threshold for fault tolerance. Nature 2014, 508, 500.
(71) Barends, R.; et al. Digital quantum simulation of fermionic
models with a superconducting circuit. Nat. Commun. 2015, 6, 7654.
(72) Riste,̀ D.; Poletto, S.; Huang, M.-Z.; Bruno, A.; Vesterinen, V.;
Saira, O.-P.; DiCarlo, L. Detecting bit-flip errors in a logical qubit
using stabilizer measurements. Nat. Commun. 2015, 6, 6983.
(73) Coŕcoles, A. D.; Magesan, E.; Srinivasan, S. J.; Cross, A. W.;
Steffen, M.; Gambetta, J. M.; Chow, J. M. Demonstration of a
quantum error detection code using a square lattice of four
superconducting qubits. Nat. Commun. 2015, 6, 6979.
(74) O’Malley, P. J. J.; et al. Scalable Quantum Simulation of
Molecular Energies. Phys. Rev. X 2016, 6, 031007.
(75) Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.;
Chow, J. M.; Gambetta, J. M. Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets. Nature 2017,
549, 242−246.
(76) Hirata, S.; Fan, P. D.; Auer, A. A.; Nooijen, M.; Piecuch, P.
Combined coupled-cluster and many-body perturbation theories. J.
Chem. Phys. 2004, 121, 12197−12207.
(77) Janssen, C. L.; Schaefer, H. F., III The automated solution of
second quantization equations with application equations with
applications to the coupled cluster approach. Theor. Chim. Acta
1991, 79, 1−42.
(78) Hirata, S. Tensor Contraction Engine: Abstraction and
Automated Parallel Implementation of Configuration-Interaction,
Coupled-Cluster, and Many-Body Perturbation Theories. J. Phys.
Chem. A 2003, 107, 9887−9897.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.7b00586
ACS Cent. Sci. 2018, 4, 559−566

566

https://aspuru-guzik-group.github.io/DiffiQult
http://libint.valeyev.net/
http://libint.valeyev.net/
http://dx.doi.org/10.1021/acscentsci.7b00586

